Strong Ion Pairing Effects on Single-Site Olefin Polymerization: Mechanistic Insights in Syndiospecific Propylene Enchainment

Ming-Chou Chen and Tobin J. Marks*

Department of Chemistry Northwestern University Evanston, Illinois 60208-3113

Received June 26, 2001

Although there is considerable circumstantial evidence that ion pairing has significant consequences for single-site polymerization catalyst¹ activity, lifetime, stability, chain-transfer characteristics, and stereoregulation,² actual mechanistic structure—function connections have remained ill-defined. In principle, the accepted pathway for syndiospecific propylene enchainment by C_s -symmetric catalysts should be a particularly sensitive probe of cocatalyst/counteranion^{2,3} effects since olefin enchainment necessarily occurs in concert with "chain-swinging" (eq 1, R = polypropylene fragment).⁴ It is known that rates of similar

reorganization processes are sensitive to, and one metric of, ion pairing strength in model metallocenium systems (R = H, alkyl group),^{3,5} and thought that analogous "back-skipping" processes without concomitant enchainment are a major source of polypropylene stereoerrors (Scheme 1).⁴ Herein we communicate the first systematic study of counteranion effects on propylene enchainment stereochemistry by the archetypical C_s -symmetric precatalyst [Me₂C(Cp)(fluorenyl)]ZrMe₂ (1),⁶ using a fairly broad array of structurally/coordinatively diverse counteranions³ as a function of temperature, propylene pressure, and solvent polarity. It will be seen that effects can be large and are to a significant degree understandable in terms of established trends in ion pairing strength and dynamics.⁷

Under rigorously anhydrous/anaerobic conditions, 1 was activated with the perfluoroaryl borane, borate, and fluoroaluminate reagents shown in eq 2. Polymerizations were first carried out

For recent reviews, see: (a) Gladysz, J. A. Ed. Chem. Rev. 2000, 100, 1167–1682. (b) Marks, T. J.; Stevens, J. C., Eds. Top.Catal. 1999, 7, 1–208.
 (c) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428–447. (d) Jordan, R. F.; Ed. J. Mol. Catal. 1998, 128, 1–337. (2) (a) Chen, Y.-X.; Marks, T. J. in ref 1a, pp 1391–1434, and references therein. (b) Luo, L.; Marks, T. J. in ref 1b, pp 97–106. (3) For recent cocatalyst studies, see: (a) Chen, Y.-X.; Kruper, W. J.; Roof G.; Wilson, D. R. J. Am. Chem. Soc. 2001, 123, 745–746. (b) Zhou, J.;

(3) For recent cocatalyst studies, see: (a) Chen, Y.-X.; Kruper, W. J.; Roof
G.; Wilson, D. R. J. Am. Chem. Soc. 2001, 123, 745-746. (b) Zhou, J.;
Lancaster, S. J.; Walker, D. A.; Beck, S.; Thornton-Pett, M.; Bochmann, M. J. Am. Chem. Soc. 2001, 123, 223-237. (c) Chase, P. A.; Piers, W. E.; Patrick, B. O. J. Am. Chem. Soc. 2000, 122, 12911-12912. (d) LaPointe, R. E.; Roof, G. R.; Abboud, K. A.; Klosin, J. J. Am. Chem. Soc. 2000, 122, 9560-9561.
(e) Sun, Y. M.; Metz, M. V.; Stern, C. L.; Marks, T. J. Organometallics 2000, 19, 1625-1627. (f) Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Nickias, P. N.; Marks, T. J. Angew. Chem., Int. Ed. 2000, 39, 1312-1316.

(4) (a) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. in ref 1a, pp 1253– 1345. (b) Coates, G. W. in ref 1a, pp 1223–1252. (c) Veghini, D.; Henling, L. M.; Burkhardt, T. J.; Bercaw, J. E. J. Am. Chem. Soc. **1999**, *121*, 564– 573. (d) Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. **1988**, *110*, 6255–6256. Scheme 1

under 1.0 atm propylene pressure in toluene from -10° to +60°C using conditions minimizing mass transfer and exotherm effects;^{3e,f,5} product isolation and characterization utilized standard techniques.^{5b,8,9} Several trends are evident in the data (Table 1, Figure 1). Product polydispersities are consistent with well-defined single-site processes and are rather temperature-, anion-insensitive. Polymerization rates are highly anion-sensitive, with the most strongly $(PBA^{-})^{5b}$ and weakly $(MeB(2-C_6F_5C_6F_4)_3^{-}, B(C_6F_5)_4^{-})^{2a,b,5d}$ coordinating anions generally affording the lowest and highest polymerization rates, respectively. Not surprisingly,^{1,4} product molecular weights fall with rising reaction temperature, although the superiority of strongly coordinating PBA⁻ might not, a priori, be predicted. Most interesting, however, is the pattern in polypropylene stereoerrors ([m], [mm]) as a function of anion and temperature (Figure 1C), and which are concentration-invariant over a 32-fold range in a control experiment with 6.8 It can be seen that the PBA⁻ catalyst exhibits far higher syndiotacticity, with far lower [m] and somewhat lower [mm] stereoerrors. As temperature is increased, all systems exhibit a precedented erosion in syndiotacticity,¹⁰ however that of the PBA⁻ catalyst is least, with the principle factor being greater temperature insensitivity of the [m] stereoerrors versus that of the other anions. Interest-

(5) (a) Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. 2000, 122, 10358– 10370. (b) Chen, X.-Y.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 6287–6305. (c) Deck, P. A.; Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1772–1784. (d) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 842–857.

(6) Razavi, A.; Thewalt, U. J. Organomet. Chem. 1993, 445, 111–114.

(7) Presented in part at the 221st ACS National Meeting, San Diego, CA, April 1–5, 2001, Abstract INORG 65.

(8) See Supporting Information for full experimental details.

(9) NMR assay: see ref 4 and references therein.

(10) For I/MAO, syndiotacticity falls with increasing temperature,^{10a} while for C_I -symmetric catalysts, isotacticity sometimes increases with increasing temperature:^{10b} (a) Kleinschmidt. R.; Refke, M.; Fink, G. *Macromol. Rapid Commun.* **1999**, 20, 284–288 (b) Grisi, F.; Longo, P.; Zambelli, A.; Ewen, J. A. J. Mol. Catal. A: Chem. **1999**, 140, 225–233.

Table 1. Propylene Polymerization Results with 1 + IndicatedCocatalysts^a

entry	cocat (cat)	T_{p} (°C)	$\operatorname{act}^{b}(\times 10^{4})$	rrrr ^c (%)	rmmr (%)	mmrr (%) ([mm])	<i>rrmr</i> (%) ([<i>m</i>])	$\stackrel{M_{\mathrm{w}}^{d}}{(\times 10^{3})}$	$M_{\rm w}/M_{\rm n}$
1	2 (6)	-10	3.1	90.0	1.1	2.2	2.2	79.8	1.75
2	3 (7)	-10	58	93.3	1.1	2.2	0.6	201	1.83
3	4 (8)	-10	920	94.0	1.0	1.9	0.6	229	1.95
4	5 (9)	-10	1.8	96.5	0.7	1.5	0.0	290	1.86
5	2 (6)	25	44	69.4	1.5	3.1	10.6	79	1.81
6	3 (7)	25	350	83.6	1.5	3.1	4.1	101	1.85
7	4 (8)	25	890	83.8	1.4	3.0	4.2	112	1.95
8	5 (9)	25	20	91.0	1.3	2.6	1.3	147	1.85
9	2 (6)	60	25	30.0	3.5	6.8	21.1	11.9	2.38
10	3 (7)	60	100	48.3	2.5	5.3	16.7	53.1	1.82
11	4 (8)	60	80	47.0	2.6	5.3	17.2	55.8	1.82
12	5 (9)	60	2.5	71.0	1.9	3.9	8.6	66.5	1.95
13	2 (6)	60 ^e	18	53.8	2.5	5.1	14.7	33.9	1.89
14	3 (7)	60 ^e	30	71.3	2.0	4.6	7.9	58.6	1.81
15	4 (8)	60 ^e	37	73.6	2.0	4.0	7.4	63.2	1.68
16	5 (9)	60 ^e	5.8	81.0	1.8	3.9	4.3	70.8	1.76
17	2 (6)	25 ^f	266	49.5	2.0	4.1	18.0	97.6	1.76
18	3 (7)	25 ^f	86	49.8	2.0	4.0	17.6	93.3	2.24
19	4 (8)	25 ^f	453	50.3	1.9	4.2	17.3	104	1.92
20	5 (9)	25 ^f	96	49.5	2.0	4.4	17.8	127	1.78

^{*a*} Under 1.0 atm of propylene in 50 mL of toluene with precise polymerization temperature control (exotherm < 3 °C). See Supporting Information for full experimental details. ^{*b*} Units: g polymer/(mol cat.× atm × h). ^{*c*} Pentad analysis by ¹³C NMR. ^{*d*} GPC relative to polystyrene standards. ^{*e*} Under 5.0 atm of propylene. ^{*f*} Under 1.0 atm of propylene in 50 mL of 1,3-dichlorobenzene.

ingly, [*mm*] stereoerrors are far less temperature-sensitive, with the PBA⁻ catalyst again slightly superior. In contrast, the MeB(C_6F_5)₃⁻ catalyst exhibits the lowest syndiotacticity with greatest increase of [*m*] and [*mm*] with rising polymerization temperature.

Experiments at increased propylene pressures reveal general increases in syndiotacticities (Figure 1D) and generally uniform but modest increases in product molecular weights⁸ (Table 1, entries 13–16), arguing that chain-transfer to monomer^{4,11} is a significant but probably not the only termination pathway. Interestingly, increases in [*rrrr*] and declines in [*m*] with increased propylene pressure are smallest for the PBA⁻ catalyst. The stereochemical consequences of increasing [propylene] are usually ascribed to increased enchainment rates versus those of competing, tacticity-degrading site epimerization (Scheme 1B).^{4,11a} Finally, polymerizations were carried in 1,3-dichlorobenzene ($\epsilon = 5.04$) (Table 1), with the net result being *compression* in the dispersion of polymerization rates and *collapse* of [*rrrr*], [*m*], and [*mm*] % to experimentally indistinguishable values of 50, 17.5, and 4%, respectively, for all cocatalysts.⁸

These results suggest a mechanistic picture in which anionspecific ion pairing effects modulate not only the rate of enchainment and chain transfer, but more importantly, the *relative rates* of enchainment versus [*m*]-enhancing/syndiotacticitydegrading site epimerization (Scheme 1B).¹² More tightly bound, stereochemically immobile anions should depress epimerization rates,⁵ with computational studies arguing that propagation in nonpolar media involves concerted anion displacement and monomer enchainment rather than highly endergonic unimolecular ion pair separation.¹³ To the extent that rates of dynamic NMRquantifiable unimolecular reorganization processes (detected by averaging of magnetically diastereotopic sites)⁵ in [Me₂C(Cp)-(fluorenyl)]ZrMe⁺X⁻ ion pairs mirror barriers in eq 1, we find that the PBA⁻ ion pair indeed has by far the highest barrier (ΔG^{\ddagger

Figure 1. (A) Polymerization activity, (B) polypropylene molecular weight, and (C) pentad distribution (%) data for polypropylenes produced by 1 + indicated cocatalysts under 1.0 atm of propylene from -10° to 60 °C. (D) Pentad distribution (%) data for polypropylenes produced by 1+ indicated cocatalysts as a function of propylene pressure at 60 °C. Lines connecting data points are drawn as a guide to the eye.

 \geq 25 kcal/mol vs 19.5 (2) kcal/mol for MeB(C₆F₅)₃⁻).¹⁴ Other NMR and crystallographic data support the strong coordinative properties of PBA^{-.5b} In contrast to these results, misinsertion or chain epimerization⁴^c processes producing [*mm*] stereoerrors (Scheme 1 C and D) would not appear to be directly influenced by decoupling from chain-swinging, and indeed it is found that the low level of [mm] is far less anion-dependent although, interestingly, these results show that the ion pairing does affect enantiofacial discrimination and chain epimerization as well (Figure 1C).¹⁵ Last, spectroscopic,⁵ theoretical,¹³ and polymerization studies¹⁶ argue that polar solvents significantly weaken ion pairing in other single-site systems, and in accord with a picture that ion pairing modulates syndiospecific enchainment, we find here that differential anion effects on propagation rates diminish⁸ and those on stereoerrors completely vanish in a more polar solvent.

Acknowledgment. Financial support by DOE (DE-FG02-86ER1351) is gratefully acknowledged. M.-C. C. thanks Dow Chemical for a postdoctoral fellowship, Dr. L. Li for helpful discussions, and Dr. P. Nickias of Dow for GPC measurements.

Supporting Information Available: Details describing syntheses of 6-9; polymerization experiments and polymer characterization; tables of pressure- and solvent-dependent polymerization data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA011558P

^{(11) (}a) For C_s catalysts, lower propylene concentrations correlate with lower product molecular weights and tacticities (mostly [m]-type stereoerrors).^{4c} (b) In contrast, declining isotacticity with increasing monomer concentration is observed in C_1 catalysts: Kukral, J.; Lehmus, P.; Feifel, T.; Troll, C.; Rieger, B. Organometallics **2000**, 19, 3767–3775. (c) For another recent monomer concentration study, see: Lin, S.; Tagge, C. D.; Waymouth, R. M.; Nele, M.; Collins, S.; Pinto, J. C. J. Am. Chem. Soc. **2000**, 122, 11275–11285.

 ⁽¹²⁾ For general kinetic models, see: (a) Bravakis, A. M.; Bailey, M. P.;
 Pigeon, M.; Collins, S. *Macromolecules* 1998, *31*, 1000–1009. (b) Gauthier,
 W. J.; Corrigan, J. F.; Taylor, N. J.; Collins, S. *Macromolecules* 1995, *28*, 3771–3778.

^{(13) (}a) Lanza, G.; Fragalà, I. L.; Marks, T. J. J. Am. Chem. Soc. 2000, 122, 12764–12777. (b) Lanza, G.; Fragalà, I. L. in ref 1b, pp 45–60. (c) Lanza, G.; Fragalà, I. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 8257–8258. (d) Chan, M. S. W.; Ziegler, T. Organometallics 2000, 19, 5182–5189, and references therein.

^{(14) (}a) Line broadening is found to be independent of concentration over an 8-fold range for 6. (b) For 7 and 8, extensive thermal decomposition occurs at > 80 °C. (c) In *o*-xylene- d_{10} .

⁽¹⁵⁾ The weak pressure dependence of %[mm] argues for a misinsertion origin.

^{(16) (}a) Herfert, N.; Fink, G. *Makromol. Chem.* **1992**, *193*, 773–778. (b) Coevoet, D.; Cramail, H.; Deffieux, A. *Makromol. Chem. Phys.* **1999**, *200*, 1208–1214.